Little Moccasins
A Lead Poisoning Prevention Manual for Tribal Day Cares and Families
Part of the United States Environmental Protection Agency's Region One's First Steps Program

This manual was adapted by Irene Kessel from: “What You Should Know about Lead Poisoning: A Resource Manual for Child Care Providers”, developed by the University of Connecticut Cooperative Extension System. Funding provided by the USEPA-Region 1, Lead Program, James M. Bryson, Project Officer, through the Connecticut Department of Public Health, Frank Greene, Technical Advisor.

Illustrated by Antowine Warrior (Sac and Fox Tribe)
Funding provided by the US EPA, Region 1, James M. Bryson, Project Officer
“Protecting the Most Valuable Natural Resource, OUR CHILDREN”

Brenda Commander, Tribal Chief, Houlton Band of Maliseet Indians

Publisher of Little Moccasins Manual and CDROM

January 1999
Table of Contents

Acknowledgements

I. Preventing Lead Poisoning
 Introduction I-1
 Health Effects I-2
 Screening I-5
 Behavior Management I-9

Techniques for Challenging Children I-10

Sources of Lead I-11

Detecting Lead-Based Paint I-13

Controlling Lead-Based Paint I-15

Household Dust I-17

Renovation and Repair I-22

Soil I-23

Drinking Water I-25

Ceramics I-27

Lead in the Air I-28

Other Sources I-29

Nutrition I-30

II. Activities for Children

Circle Time/ Literacy Activities II-2

Activity 1. Felt Board Story: “Two Friends Learn About Lead”

Activity 2. Lead Paint Dust Source Chart

Activity 3. Healthy Food/ Unhealthy Food Chart

Activity 4. Memory Game

Science Activities II-18

Activity 5. Lead Dust Simulation 1

Activity 6. Lead Dust Simulation 2

Art Activities II-23

Activity 7. Lead Sources Collage

Activity 8. Collage of Healthy Foods

Activity 9. Cut Out and Paste Healthy Foods

Activity 10. Open Ended Drawing

Music Activities II-30

Activity 11. Drumming Song: “Get the Lead Out”

Activity 12. Piggy Back Songs

Activity 13. “Today is Monday” Song

Cooking Activities II-41

Activity 14. Rice Pudding: Low Fat Dessert That Provides Iron, Calcium, Vitamin C and Zinc
Activity 15. Quahog or Clam Chowder: Low Fat Foods That Provides Iron, Calcium, Vitamin C and Zinc

Activity 16. Boston Baked Beans: Low Fat Foods That Provides Iron, Calcium, Vitamin C and Zinc

III. Resources
IV. Glossary
V. Project Evaluation
VI. Master Copies
Acknowledgments

Appreciation is extended to the following individuals for their assistance in preparing this manual:

Brenda Commander, Chief, Houlton Band of Maliseet Indians
Philip Quint, Lead Director, Houlton Band of Maliseet Indians
Susan Deveau, Houlton Band of Maliseet Indians
Jo Ann Dunn, Director, North American Indian Center of Boston
Barbara Namais, Health Director, North American Indian Center of Boston
Korri Palm, RN, North American Indian Center of Boston
Trevor White, Environmental Director, Passamaquoddy Tribe
Mark Ranco, Environmental Health Technician, Penobscot Indian Nation

Special appreciation is extended to the following educators for their assistance in designing the activities for children presented in this manual:

Pat Landry, Native American Head Start Director, North American Indian Center of Boston
Julia Duling, Micmac Preschool Teacher, Boston
Neville Motta, Child Care Director, Narragansett Nation
Joe Frances, Child Care Director, Penobscot Nation
Betty Lowey, Head Start Director, Passamaquoddy Tribe
Margaret Howe, Education Director, Houlton Band of Maliseet Indians
Cindy Pollack, Child Care Director, Passamaquoddy Tribe

Special appreciation for technical and editorial consulting to:
Karen Medville (Cherokee), Environmental Toxicologist, Intertribal Scientific Advisor, and Associate Research Scientist at Arizona State University West

Editorial consultant:
June Goldstein

This manual was modeled after:
Technical assistance provided by Frank Greene, Connecticut Department of Public Health.
Funding provided by USEPA-Region I, James M. Bryson, Project Officer, through the Connecticut Department of Public Health.

Chapter on managing challenging behavior written by:
Cathy Malley, Extension Educator, University of Connecticut Cooperative Extension System

Children's activities were borrowed, adapted and expanded from the original work of:
Maureen T. Mulroy, Ph.D., University of Connecticut Cooperative Extension System
INTRODUCTION

Our children are our future. They will carry on our traditions, our heritage, our values. Their health and well-being should be our most important priority. To continue to give our children the best care possible, we need to keep informed of the ever growing environmental threats to their well-being in our ever more complex world.

Lead is a toxic metal that can cause permanent damage to our children. Lead poisoning can damage young children’s brains. For many years, lead was taken from the Earth and was used to make products used in our daily environments. All of our automotive gasoline contained lead until 1986, when it began to be phased out. Even though it is no longer used, the lead in that gasoline remains today in the soil by the side of our roads. House paint contained lead until 1978. The lead in paint remains on the walls of about two thirds of our homes —about 64 million houses and apartments in this country. Lead is still present in hundreds of products in the average home environment. Some of the most common uses of lead are car batteries, gasoline for agricultural machinery, paint for commercial and marine uses, fishing sinkers and curtain weights, ammunition, ceramic glazes, leaded crystal, and many plastic products.

Children of lower income families, specifically those living in older housing that is not well maintained and who might not receive well-balanced diets, have the highest risk of lead poisoning. The risk is increased when such older housing is repaired or renovated without the proper precautions being taken.

Fortunately, however, lead poisoning is totally preventable. The key is awareness of its causes and how to control them. We can protect our children by learning about lead poisoning and taking action to prevent it.
Lead poisoning damages virtually every organ of the body. The most serious effect for young children is on the development of the brain. Sometimes lead enters the body by breathing in fine lead dust in the air, both indoors and outdoors. Usually children absorb lead by ingesting paint, soil or dust with lead in it.

Young children ingest more lead because they come into contact with dust and soil more often than older children or adults. Young children crawl and play on the floor, which might have lead dust on it. They play in the dirt, which might be contaminated with lead. They often put their hands and objects in their mouths, so the lead in the dust and dirt gets into their bodies.

Although some of the lead that enters a child’s body is eliminated, a significant percentage travels through the child’s blood and is deposited in the various organs of the body, including the brain. Since children's brains are still developing until the age of six, young children are the most vulnerable to lead poisoning.

Some of the lead is stored in the child’s bones. When the child grows up, that stored lead can be released back into the blood and throughout the body again, especially at times of increased demand, such as pregnancy.

Unborn children can also be hurt by lead. The lead that a pregnant woman is exposed to, as well as any lead released from the bones during pregnancy, is passed along to the fetus. This can cause premature births, low birth weights and still births. Pregnant women, therefore, need to be very careful about exposure to lead in the environment, just as young children do.

Very high levels of lead in a child’s blood can cause anemia, hearing problems and kidney damage. It can interfere with a child’s growth, and cause reduced intelligence, learning and behavioral problems. In unchecked cases lead poisoning can lead to coma or even death, though this is very rare.

Even at levels that are fairly common levels that were previously considered safe lead damages the brains of young children as they are developing. Childhood exposure to lead can lower intelligence and cause learning disabilities, hearing impairment, behavior problems, slower reaction time, and attention problems. Damage can be occurring inside the cells in a child’s body even though there are no apparent outward symptoms.

It is difficult to know just by looking whether a child is lead poisoned because there may be no obvious symptoms. Even when there are symptoms, the symptoms of lead poisoning are very similar to symptoms of other illnesses.
These symptoms may include:

- irritability
- stomach pains
- dizziness
- constipation
- vomiting
- lack of appetite
- muscle weakness
- difficulty sleeping
- very high or very low activity level
HEALTH EFFECTS OF LEAD ON CHILDREN & ADULTS

Lowest Observable Adverse Effect/Levels

Death → 150 → Coma/Seizures
Kidney damage → 100 → Frank Anemia
Stomach aches/cramps → 50 → Decreased ability to make red blood cells
Decreased ability to make red blood cells → 40 → Nerve problems, decreased sensation & ability to move quickly
Decreased ability to use Vitamin D → 30 → Increased blood pressure, Hearing loss
Nerves affected (slower reaction time, worsened sensation) → 20 → Interference in ability to make red blood cells
Interference in ability to make red blood cells → 20 → Interference in ability to make red blood cells (women)
Premature birth, reduced birth weight, difficulty maintaining steady posture → 10 → Hypertension (high blood pressure)
Possible decreased ability to use Vitamin D
Interference in brain cell development → IQ
10 → Hearing/Growth
Lead crosses the placenta and into the fetus

CHILDREN

ADULTS

Lead Concentration
(Micrograms of lead per deciliter of blood)

Based on data from CDC.
The only way to know whether a child is lead poisoned from being exposed to lead in his or her environment is to have the child’s blood tested by a professional. This is referred to as screening for lead poisoning. A small sample of blood is taken from the child’s finger (this is called a finger stick or capillary blood test) or from the arm (this is called a venous blood test).

The amount of lead in the blood is measured. The blood may be sent to a laboratory to be measured, in which case results come back a couple of weeks later. The lead can also be measured right in the office or clinic. A few drops of blood can be taken and analyzed by a machine called LeadCare® and the results are available in 10 minutes.

A child should be screened as part of a regular yearly check-up from the ages of six months through six years. The most important times to screen a child are at the ages of one and two, because those are the ages that a child is most likely to be lead poisoned. A child should also be screened at any time when he or she might be at high risk. A child is considered to be at high risk of lead poisoning if:

1. The child lives in or regularly visits a home or building built before 1960. The risk is even higher if it was built before 1950, or if paint from the Bureau of Indian Affairs was used.
2. The child lives in or regularly visits a home or building built before 1978 that has recently (within six months) undergone renovation or remodeling, or has been poorly maintained and has paint that is flaking or peeling (especially in the case of a BIA building).
3. The child has a sibling or playmate who has lead poisoning. (Discuss lead poisoning with friends and neighbors so that you will be aware of cases of such lead poisoning.)
4. A member of the child’s household comes in contact with lead in their work or hobby. (See the list of occupations and hobbies involving lead exposure in the section on Dust from Occupations, below.)

The amount of lead in the child’s blood, known as the blood lead level, tells the doctor or nurse whether the child is currently being exposed to lead and is at risk